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Abstract 
The objective of this project is to propose an optimal design of a recirculating electron linac for a 
future LHC-based e-p collider—the LHeC [1, 2].  Primary considerations are the cost, structure, 
shape, and size of the recirculating track, the optimal number of revolutions through which the e- 
beam should be accelerated, and radiative energy loss in the bends.  Secondary considerations are 
transverse emittance growth due to radiation, the number of dipoles needed in order to maintain an 
upper bound on the emittance growth, the average length of such dipoles, and the maximum 
bending dipole field needed to recirculate the beam.  These effects will be studied macroscopically 
with respect to the overall structure, in that smaller effects related to machine optics of the lattice 
structure will be neglected.  The scope of the optimization problem is, in essence, a “first order” 
insight into optimal dimensions, centered on minimizing the most important parameter—cost. 
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I.  Introduction
The objective of this project is to propose an optimal design of a recirculating electron linac for a future 

LHC-based e-p collider—the LHeC [1, 2].  Primary considerations are the cost, structure, shape, and size of the 
recirculating track, the optimal number of revolutions through which the e- beam should be accelerated, and 
radiative energy loss in the bends.  Secondary considerations are  transverse emittance growth due to radiation, 
the number of dipoles needed in order to maintain an upper bound on the emittance growth, the average length 
of such dipoles, and the maximum bending dipole field needed to recirculate the beam.  These effects will be 
studied macroscopically with respect to the overall structure, in that smaller effects related to machine optics of 
the lattice structure will be neglected.  The scope of the optimization problem is, in essence, a “first order” insight 
into optimal dimensions, centered on minimizing the most important parameter—cost.        

II. LHeC
Although it would not be the site of the first ever e-p collisions, a future LHeC  would be the first ever site 

of electrons colliding with protons at energies as high as 7TeV—extending the discovery reach of the LHC.  This 
project is a prefix to any new highest-energy e-p physics.  It focuses on finding an optimal structure for the e- 

linac—subject to the constraint that a specific target energy is reached.  The primary shape studied for the 
recirculating linac is the “race-track” design.  Structurally, this project looks at two variations of it.  

 

Linac Drift

R

One AccelerationRevolution

        

Linac Linac

R

Two AccelerationsRevolution

     
The “race-track” design limits the structure of the linac+recirculation to 4 parameters: length (of the linac 

and/or drift sections), radius (of the bending track), boolean (which is given a value of TRUE, or 1, for a doubly 
accelerating structure and FALSE, or 0, for the singly accelerating structure), and the number of revolutions 
through which the  e- beam will be accelerated and recirculated.  

Another design that will be briefly addressed later is the 5-parameter “ball-field” design, which calls for a 
slightly more complicated algorithm and will be compared to the race-track design. .

III. Analysis
In the machine, there are two sources of energy change for the e- beam: acceleration by the linac and 

energy loss to synchrotron radiation in the bends.  This model will neglect smaller sources of radiative energy 
loss in the linac, in the quadrupoles, from wake-fields, etc. 
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Radiative Energy Loss and Linac Energy Gain
In the bends, the synchrotron radiation power as a function of the electron's energy is given by:    

*R is the radius of our bend.

This leads to a first order differential equation, which can be solved analytically to give the total change in energy 
when an e- beam is bent by θ radians.
                                                                 

                                                                             
 (**) dealing with highly relativistic particles, we can assume v ≈ c

This yields our total energy change to radiation loss:

                                                                                                  

*E0 is the energy at the start of the bend.

All energy gain takes place along the length of the linac in the form:
                                                                   
                                                            
*dE/dx is our energy gradient (the energy gain per unit length of the linac). 

Recursive Energy Function
From these two sources of energy change—given the injection energy, the type of structure (boolean = 0,1), and 
the total number of revolutions (N) through which the e- beam passes, one can construct a recursive formula for 
the ejection energy of the particles: 

*Ei refers to the energy at the injection point at the start of the i-th revolution so Einj = E0.

Cost
Assuming a constant cost per unit length for the three types of tracks—linac, drift, bending—we can trivially 
formulate the total cost of the design from basic geometries.

*$linac, $drift, $bending obviously refer to the cost/m for each type of track.  
*δ is the Kronecker Delta, introduced to account for the two different structure options. 
*A factor of N—the number of revolutions—must be introduced to the bending term of the cost, since each 
revolution comes with a different energy, thus requiring a higher dipole field for each loop of the bend (unless an 
FFAG-like optics with extremely large momentum acceptance could be employed).  
Consequently, we assume that for each bend, there is cost-wise a “new” track.

Effective Cost
The goal of this project is to find the optimal radius, length, type of structure, and number of revolutions 

to minimize the cost formula given above, while achieving the target energy for the machine; however, this 
optimization problem does not constrain energy loss from radiation.  Relatively high energy losses (Eloss /Etarget > 
5%) would give an inefficient design with a high operating cost.  It is therefore appropriate to introduce an 
effective cost, with the aid of the dummy weight parameter λ.
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Effective Cost  Total Cost   Eradtotal   

* λ has units of $1,000,000/GeV, literally giving a cost per unit of energy loss.

Emittance Growth
Beam emittance in the transverse plane is significantly affected by radiation loss.  For emittance in the x (radial) 
direction we have: 
  

After some derivation this yields [3]:

*li gives the length of the i-th dipole in our bend

Assuming there is a homogeneous distribution of D identical dipoles per bend, we find [4]:

Assuming the same number of dipoles for each revolution's lattice structure, after N revolutions we find:

* There is a factor of 1/2 for the emittance growth for the doubly-accelerating structure.  There are twice as many 
accelerations in a given revolution (as indicated by the upper index of the sum),so the i-th component emittance 
growth is only valid for a semi-circle (πR)–summed over 1/2 the number of dipoles per revolution. 

Setting an upper limit on this value [(Δγεx)< 100μm] will yield a minimum number of dipoles needed for each 
revolution of the total circumference, while 2πR/Dmin will give the maximum average length needed for each one. 

Dipole Bending Field
A Taylor series approximation for the bending field (assuming dependence only on x) yields:

In the dipole approximation, only the first term is considered:

For highly relativistic particles:

*In finding the optimal effective cost parameters for our design, it is necessary to check what Bmax is, since 
bending fields over 2 T require superconducting magnets—where the cost of dipoles and the bending track 
would jump.  Such an outcome would render the algorithm ineffective, since it would have required a greater 
value for $bend.

IV. Computational Algorithm
The core of this project's algorithm, is the optimization of the effective cost—yielding a dual effect of 

minimizing cost and, to the variable extent of the weight parameter λ, radiative energy loss.  This optimization 
problem (again neglecting specific effects of the machine's optics or beam properties) calls for 11 variables:  the 
effective cost, which needs to be minimized, is a function of 10 variables, while the constraint parameter—the 
target energy—is another variable:
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2 4 6 8 10
No. of accelerations600

800

1000

1200

1400

Effective cost Million $ Effective Cost at 60 GeV

2 4 6 8 10
No. of accelerations400

500

600

700

800

Optimum cost Million $ Cost at 60 GeV

Variable Type Variable(s) Symbol(s) Units

Size Radius (bend), length (linac/drift) R, L m, km 

Energy injection, target energies Ei, Et MeV, GeV

Linac Energy Gain energy gradient dE/dx MeV/m

Structure boolean (singly, doubly accelerating) Bool 0, or 1

Design number of revolutions N integer  

Cost cost of linac, drift, bending $linac, $drift, $bend $1,000/m

Weight Parameter effective cost per unit energy loss λ $1,000,000/GeV

Having already constructed formulas for total effective cost and the final energy, the optimal dimensions 
for our machine are the ones that minimize the total effective cost subject to the constraint that the final energy 
of such machine is exactly equal to the target energy of the machine.  In order to simplify and expedite the 
computational optimization process, it is helpful to narrow the function to two variables— radius and length.  This 
is made possible by either setting a constant value for all other parameters, or specifying an incremented range 
over which the optimization algorithm will be run for multiple trials.  Here are the parameters used:
 
Parameter Value/Range

Ei 500 GeV

Et {20, 40, 60, 80, 100, 120} GeV

dE/dx 15 MeV/m

N trials from 1 to 8

bool {0, 1}

$linac $160,000/m

$drift $15,000/m

$bend $50,000/m

λ {0, 1, 10, 100, 1000, 10000} $Mill./GeV

We now have a optimization problem for a function of two variables → Find R* and L* on the curve E (R, 
L) = Et , such that (Effective Cost)Min = Effective Cost (R, L)|R = R* , L = L*.  Using R* and L*, the formulas constructed 
in the analysis will yield values for cost, effective cost, circumference, energy loss, the number of dipoles per 
bend needed to keep an upper bound on emittance growth, the average length per dipole, and the maximum 
bending field required to bend the beam at it's greatest energy.  

V. Sample Results
1.  In these following samples, λ is fixed at $100 Million/GeV.  This first example is the results gathered 

for a target energy of 60 GeV.  Red represents the doubly-accelerating structure, and blue is the singly-
accelerating structure.  The results span over the range of possible revolutions, optimizing effective cost and 
giving the minimal optimal design—namely the structure type and number of revolutions.  The first number in 
each row of the table refers to the number of accelerations for the design.  

nacc (bool = 0)  = N +1 and nacc (bool = 1)  = 2N +1 
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2 4 6 8 10
No. of accelerations0.50

0.55

0.60

0.65

0.70

0.75

Energy Loss per Rev GeV Energy Loss at 60 GeV

2 4 6 8 10
No. of accelerations0.62

0.64

0.66

0.68

0.70

Dipole Field T  Maximum Dipole Field at 60 GeV
2 4 6 8 10

No. of accelerations8

9

10

11

12

13

14

Ave. Dip. Length m Ave. Dipole Length at 60 GeV

Minimum cost at 60 GeV is $$365.086 Million at 2 revs, for the 1 accrev structure.

Minimum effective cost at 60 GeV is $$446.308 Million at 1 revs, for the 1 accrev structure.

Results for singly accelerating structure.

Rad. m Length km Circ. km Tot. Cost $$ Mill. Eff. Cost $$ Mill. LossRev GeV No. Dip. Ave. Length Dip. m B T
2 157.982 1.99864 4.98991 399.393 446.308 0.469146 69 14.3859 0.633415
3 205.304 1.34909 3.98814 365.086 486.98 0.609466 113 11.4156 0.645608
4 229.869 1.0252 3.49471 396.056 598.268 0.674039 143 10.1 0.647065
5 246.673 0.831149 3.21219 455.43 740.05 0.711549 166 9.33671 0.642317
6 259.866 0.701898 3.03658 531.029 899.107 0.736156 184 8.87384 0.634577
7 271.077 0.609634 2.9225 617.654 1069.81 0.753594 200 8.51614 0.625351
8 281.078 0.540471 2.84701 712.705 1249.36 0.766643 214 8.25264 0.615404
9 290.281 0.4867 2.79729 814.728 1436.18 0.776817 226 8.07031 0.605155

Results for doubly accelerating structure.

Rad. m Length km Circ. km Tot. Cost $$ Mill. Eff. Cost $$ Mill. LossRev GeV No. Dip. Ave. Length Dip. m B T
2         

3 206.541 1.33534 3.96841 492.194 552.202 0.600083 88 14.747 0.645069
4         

5 241.451 0.811986 3.14105 411.543 552.442 0.70449 128 11.8522 0.660179
6         

7 259.207 0.587936 2.80452 432.437 656.76 0.747745 155 10.5074 0.658173
8         

9 271.827 0.463526 2.63499 489.916 798.515 0.771497 175 9.75964 0.650502

2 4 6 8 10
No. of accelerations3.0

3.5

4.0

4.5

5.0
Circumference km Circumference at 60 GeV

2 4 6 8 10
No. of accelerations

100

150

200

No. of Dipoles
Number of Dipoles at 60 GeV
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Results For Optimal COST Structure
 2T

This yields the following plots of the optimal designs (to scale intrinsically but not with respect to each other).  

 

Linac

Optimal Cost Design

     

Linac

Optimal Effective Cost Design

 
2.  The following results summarize the optimal cost and effective cost parameters and structure for

each target energy across our energy range for  λ = $10 Million/GeV.
*On the maximum dipole field plot, the superconducting threshold (        ) is mapped for reference.  
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Optimum cost Million $ Cost at   10
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Effective cost Million $ Effective Cost at   10
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2

4

6

8
Circumference km  Circumference at   10
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Energy Loss  Rev GeV  Energy Loss at   10
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Results For Optimal EFFECTIVE COST Structure

AccRev No. Revs
E  20 GeV 1 4
E  40 GeV 1 2
E  60 GeV 1 2
E  80 GeV 1 2
E  100 GeV 1 1
E  120 GeV 1 1

Circ. km Tot. Cost $$ Mill. Eff. Cost $$ Mill. LossRev GeV No. Dip. Ave. Length Dip. m B T
20 GeV 0.69591 79.7504 111.802 0.0801298 38 4.41129 2.00381
40 GeV 2.35204 212.963 267.4 0.272184 66 8.67786 0.974729
60 GeV 3.98814 365.086 486.98 0.609466 113 11.4156 0.645608
80 GeV 5.92974 547.612 763.824 1.08106 168 13.695 0.480484
100 GeV 9.45627 724.775 854.239 1.29464 136 20.1272 0.379565
120 GeV 12.0237 904.563 1090.7 1.86135 174 22.607 0.315864

20 40 60 80 100 120
Energy GeV 0

100

200

300

400

No . of Dipoles
Number of Dipoles at   10

20 40 60 80 100 120
Energy GeV 

1

2

3

4

Ave . Dip . Length mAve . Dipole Length at   10

20 40 60 80 100 120
Energy GeV 

1

2

3

4

5

Dipole Field T Maximum Dipole Field at   10

20 40 60 80 100 120
Energy GeV 

200

400

600

800

Optimum cost Million $ Cost at   100

20 40 60 80 100 120
Energy GeV 

200

400

600

800

1000

Effective cost Million $Effective Cost at   100

20 40 60 80 100 120
Energy GeV 0

2

4

6

8

10

12
Circumference km  Circumference at   100

20 40 60 80 100 120
Energy GeV 

0.5

1.0

1.5

Energy Loss  Rev GeV  Energy Loss at   100
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AccRev No. Revs
E  20 GeV 1 3
E  40 GeV 1 2
E  60 GeV 1 1
E  80 GeV 1 1
E  100 GeV 1 1
E  120 GeV 1 1

Results For Optimal COST Structure
AccRev No. Revs

1 1 3
10 1 3
100 1 2
1000 1 1
10000 1 1

20 40 60 80 100 120
Energy GeV 0

50

100

150

No . of Dipoles
Number of Dipoles at   100

20 40 60 80 100 120
Energy GeV 

5

10

15

20

Ave . Dip . Length mAve . Dipole Length at   100

20 40 60 80 100 120
Energy GeV 

0.5

1.0

1.5

2.0
Dipole Field TMaximum Dipole Field at   100

3. Another approach is to look at a fixed energy, and plot the values of the optimal desig parameters as a 
function of λ.  The following have a fixed target energy of 80 GeV, mapping the optimal parameters as a function 
of Log(λ)–in order to gain insight into an appropriate order of magnitude for λ in the model.

  . 
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Circ. km Tot. Cost $$ Mill. Eff. Cost $$ Mill. LossRev GeV No. Dip. Ave. Length Dip. m B T
1 3.86056 373.894 392.895 6.33375 440 1.31254 2.00828
10 3.98128 410.312 512.438 3.40418 326 3.04049 1.21654
100 5.92974 547.612 763.824 1.08106 168 13.695 0.480484
1000 10.7359 736.195 1005.58 0.269381 68 79.6859 0.155072
10000 22.3963 1318.76 2172.83 0.0854074 47 363.645 0.0492767
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Results For Optimal EFFECTIVE COST Structure
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Optimum cost Million $ Cost at 80 GeV
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Effective cost Million $ Effective Cost at 80 GeV
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1 2 3 4
Log 
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2.0
Dipole Field T Maximum Dipole Field at 80 GeV

AccRev No. Revs
1 1 3
10 1 2
100 1 1
1000 1 1
10000 1 1

Circ. km Tot. Cost $$ Mill. Eff. Cost $$ Mill. LossRev GeV No. Dip. Ave. Length Dip. m B T
1 3.86056 373.894 392.895 6.33375 440 1.31254 2.00828
10 4.66643 419.184 478.548 2.96821 251 3.46496 1.2408
100 7.11154 556.379 639.438 0.830591 101 17.3944 0.474945
1000 10.7359 736.195 1005.58 0.269381 68 79.6859 0.155072
10000 22.3963 1318.76 2172.83 0.0854074 47 363.645 0.0492767



VI. Limitations of Model
1. The model assumes a constant cost of bending track.  In reality, the cost of a bending dipole magnet 

increases with the dipole strength—which goes like 1/R.  Therefore, smaller turns require stronger 
magnets, and would increase the bending track cost.  For all domains of the target energy and λ, where 
the maximum dipole field was below the superconducting region (< 2T), the model provides a good 
approximation—as there is minimal fluctuation in dipole cost for non-superconducting magnets, and a 
constant bending track cost is more than reasonable for the aim of this project.  For all domains where 
the model calls for dipole strengths in the superconducting region, the model is ineffective—as the cost 
of dipoles jumps, requiring a higher value for the $bend variable and then a rerun of the new algorithm.  

2. The model was run with the number of accelerations ranging from 2 to 9—corresponding to 1-8 
revolutions for the singly accelerating structure and 1-4 revolutions for the doubly accelerating structure. 
There was no “magical” reason for 8 as the upper limit of the revolution range; it is merely the last value 
for which Mathematica could evaluate the optimization problem and its resulting parameters in a 
reasonable amount of time.  For energy and λ values that returned 8, or 4 as the optimal number of 
revolutions for the singly, or doubly accelerating structures, the minimum found is not necessarily a 
global minimum, since the algorithm computes the minimum of the specified range.  Fortunately, this 
only occurs for cases where λ = 0 and λ = 1 and  Et = 20GeV.  Any λ = 0 results are not very useful, 
since they put no constraint on the amount of energy loss—contrary to one of the primary objectives of 
the model.  The λ = 1 result, too, almost neglects energy loss, while 20 GeV marks the lower bound of 
the range of target energies looked at.  This case lies outside the range of interest for any realistic 
machine.         

3. This model looks mostly at construction cost and, to a limited extent, any operating cost associated with 
high amounts of radiative energy loss.  It does not consider operating cost associated with 
instrumentation, maintenance, or repair.  The objective of the model is to merely provide a starting point 
in considerations of the dimensions of the machine.  Now it's results should be scrutinized in future, 
modified models that expand the complexity of the machine by introducing a detailed optical structure, 
aspects of beam dynamics, and more operating cost considerations.      

VII. Conclusions
Across the range of energy values and weight parameters studied, the results unanimously give a singly 

accelerating structure as the optimal structure for both minimum cost and minimum effective cost.  The following 
table summarizes the optimal number of revolutions for each (λ, Et) pair studied.

Optimal Cost Structure (OCS)
λ / Et 20 40 60 80 100 120

0 8 6 4 3 3 3

1 8 5 4 3 3 2

10 7 4 3 3 2 2

100 4 2 2 2 1 1

1000 2 1 1 1 1 1

10000 1 1 1 1 1 1

Optimal Effective Cost Structure (OES)
λ / Et 20 40 60 80 100 120

0 8 6 4 3 3 3

1 7 5 4 3 3 2

10 5 3 2 2 2 1

100 3 2 1 1 1 1

1000 1 1 1 1 1 1

10000 1 1 1 1 1 1

Depending on the decided target energy and an appropriate value for λ, this chart shows the optimal 
number of revolutions for which the singly-accelerating race-track machine should be constructed.  Inserting 
bool = 0 and this optimal number of revolutions into the algorithm of the Mathematica notebook used to produce 
the first sample result will yield the optimal dimensions as well as the other relevant parameters studied. 
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AccRev No. Revs
1 1 4
10 1 3
100 1 2
1000 1 1
10000 1 1

Circ. km Tot. Cost $$ Mill. Eff. Cost $$ Mill. LossRev GeV No. Dip. Ave. Length Dip. m B T
1 2.35779 244.161 260.47 4.07731 345 0.975308 2.79103
10 2.71844 271.885 329.21 1.91081 215 2.53188 1.68113
100 3.98814 365.086 486.98 0.609466 113 11.4156 0.645608
1000 7.03709 500.96 653.126 0.152166 47 65.1265 0.206494
10000 13.6238 830.033 1312.48 0.0482447 32 301.704 0.065581

AccRev No. Revs
1 1 4
10 1 2
100 1 1
1000 1 1
10000 1 1

Circ. km Tot. Cost $$ Mill. Eff. Cost $$ Mill. LossRev GeV No. Dip. Ave. Length Dip. m B T
1 2.35779 244.161 260.47 4.07731 345 0.975308 2.79103
10 3.27721 292.815 326.224 1.67047 167 2.90254 1.68755
100 4.98991 399.393 446.308 0.469146 69 14.3859 0.633415
1000 7.03709 500.96 653.126 0.152166 47 65.1265 0.206494
10000 13.6238 830.033 1312.48 0.0482447 32 301.704 0.065581

Deciding the best target energy depends on the physics goals of the desired e-p collisions, which is 
beyond the subject of this project; however, once a target energy is chosen, studying secondary effects of dipole 
length and number, as well as the maximum bending field will provide some insight into orders of magnitude for λ 
at which the model is most effective.  For example, at a machine target energy of 60 GeV, the OCS at each λ 
yields:
  

and the OES gives:

One of the most important parameters is the maximum bending field, which needs to kept under 2T—the 
superconducting threshold.  Both tables allow us to throw out λ = 1, and possibly λ = 10, where the 
superconducting region is being approached.  

Looking then at λ = 10, the next important consideration is the number of dipoles, since total cost is 
realistically determined on a per dipole basis.  For the OCS, the model requires at least 215 dipoles/rev at a 
minimizing structure of 3 revolutions, yielding 645 total dipoles.  For the OES, the corresponding numbers are 
167/rev and 334.  At λ = 100, there is a sharp decrease, yielding a minimum of 226 total dipoles for the OCS 
(almost 1/3 the amount for λ = 10) and just 69 for the  OES (almost 1/5 the amount for λ = 10!).  In terms of just 
the number of dipoles needed and the average length alloted for each one (increased by a factor of almost 5 for 
both tables), λ = 100 is much favored over λ = 10. 

It is important to note that the minimal number of revolutions is just 1 for the last 2 λ-values for the OCS 
and the last 3 for the OES.  At 1 revolution in the singly-accelerating structure, the e- beam undergoes just 2 
accelerations, almost defeating the purpose of using a recirculating structure.  Using the energy gradient of 15 
MeV/m and a target energy of 60 GeV, a straight linac would require 4 km in length and cost $640 million at 
$160,000/m.  Looking at the effective cost for  λ = 1000 and  λ = 10000, the model yields no advantage to using 
recirculation in the first place.  We can throw out these 2 values of  λ, leaving  λ = 10 and 100.

Any  λ > 10 brings down the maximum dipole field (which is already flirting with the superconducting 
region) and the number of dipoles needed (this realistically brings down cost of construction).  Any  λ ≥ 100 
yields optimal effective cost at just 1 revolution, making the design and construction of a recirculating structure 
spatially and cost inefficient.  Consequently, at 60 GeV, this model is most effective for  λ values within 1 order of 
magnitude—between 10 and 100 (corresponding to tens of millions of dollars per GeV energy loss). 

Appendix A. Ball-Field Design
Conceptually, and pre-computationally, the idea for the “ball-field” design was thought of as a way to 

bring down the radiative energy loss significantly by forcing the recirculating track of the structure out to larger 
radii (since synchrotron power goes like 1/R2, so energy loss goes approximately like 1/R).  Structurally, this 
design comes with five parameters: the length of the linac, the length of the two drift sections, the small radius 
(R), the angular spread of the small circle (α), and, of course, the number of revolutions.  Here are two samples 
of the structure for 1.  α < π/2 and 2. α > π/2. 
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Optimal radius  86.6367 m
Optimal length  1.08704 km
Total circumference  2.71844 km
Total energy loss to radiation  5.73243 GeV
Total cost of design  $271.885 million
Effective cost of design  $329.21 million
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Finding an optimal ball-field design uses a similar algorithm as the race-track design—fixing α and 
optimizing the total effective cost function of three variables (linac length, drift length, and small radius).  The 
following samples compare, for 60 GeV, the OCS of the race-track design to the OCS of the α = π/3 and 
α = 2π/3 ball-field designs.  All parameters used for the injection energy (500 MeV),  the energy gradient (15 
MeV/m), and cost of each kind of track (same as before) are identical for the two designs compared.  As 
determined before, an appropriate value for λ at this energy is between 10 and 100.  Referring to the OCS race-
track chart, we will use N = 3 at λ = 10 and N = 2 at λ = 100. 

  
λ = 10

                Race Track                                                                   Ball Field
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Optimal small radius  84.8961 m
Optimal linac length  1.087 km
Optimal drift length  1.07737 km
Total circumference  3.7868 km
Total energy loss to radiation  5.7299 GeV
Total cost of design  $271.839 million
Effective cost of design  $ 329.138 million
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Optimal small radius  39.0311 m
Optimal linac length  2.00547 km
Optimal drift length  0 km
Total circumference  7.10074 km
Total energy loss to radiation  0.674109 GeV
Total cost of design  $575.639 million
Effective cost of design  $ 582.38 million
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λ = 100
                Race Track                                                                   Ball Field

As demonstrated by this one example, the α < π/2 ball-field design does reduce energy loss significantly; 
however, it comes at about double the total cost for λ = 10 and about 1.6 times the total cost for λ = 100.   The 
α > π/2 ball-field design comes at very comparable costs at both λ values, but yields a larger circumference (to 
be expected) and comparable energy loss—defeating the original purpose for constructing such a shape.  

While this particular project explored options for the race-track design, it would definitely be worthwhile to 
construct a more sophisticated analysis for the ball-field design next—following a similar algorithm for the same 
group of (λ , E) pairs over an incremented α-range and comparing the results to the race-track results.  Only two 
pairs were studied here for just two different values of α.  At this point, it would be impossible to generalize its 
conclusions.   
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Optimal radius  205.304 m
Optimal length  1.34909 km
Total circumference  3.98814 km
Total energy loss to radiation  1.21893 GeV
Total cost of design  $365.086 million
Effective cost of design  $486.98 million

Optimal small radius  93.2266 m
Optimal linac length  1.99316 km
Optimal drift length  0 km
Total circumference  7.39917 km
Total energy loss to radiation  0.304761 GeV
Total cost of design  $589.206 million
Effective cost of design  $ 619.682 million
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Optimal small radius  199.215 m
Optimal linac length  1.34906 km
Optimal drift length  1.31418 km
Total circumference  5.2713 km
Total energy loss to radiation  1.21772 GeV
Total cost of design  $364.951 million
Effective cost of design  $ 486.723 million
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